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We and others have extensively employed dithiane cou-

plingst2 with epoxides,a-alkoxy iodides and tosylates, and

aldehydes for the stereocontrolled generation of protected aldol
linkages and the union of advanced fragments in complex
molecule synthesig* Recent studies have also established the

tactical advantages of domino reactivasd two-direction chain
extensiorf. Herein we report the one-flask linchpin coupling
of 2-(trialkylsilyl)-1,3-dithiane with two different electrophiles
via solvent-controlled Brook rearrangemént.

In 1994 Tietze and co-workers descriBetle symmetrical
bisalkylation of trimethylsilyldithiane X) with 2 equiv of a
scalemic epoxide [e.g./H)-2, Scheme 1]. Following initial
reaction of the lithio derivative ofl with the epoxide, the
resultant alkoxide undergoes 1,4-Brook rearrangerh&ams-
ferring the silyl group to oxygen and generating the 2-alkyl
lithiated dithiane; coupling with a second molecule of the
epoxide then yields<)-3. This process requires a reaction time
of 2 days and is inapplicable to unsymmetrical couplings (vide
infra).
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In our syntheses of FK508,rapamycin and demethoxy-
rapamycini® and discodermolidé treatment witht-BuLi in
10% HMPA/THF at—78 °C proved to be the optimum proto€ol
for rapid generation of 2-substituted dithiane ani&hswe
began the present study by using these conditions for bisalky-
lation of 2tert-(butyldimethylsilyl)-1,3-dithiane4),1* a substrate
also successfully employed by Tietze which leads to installation
of the more robust TBS hydroxyl protecting group. Metalation
of 4 in 10% HMPA/THF and immediate addition of epoxide
(—)-5 readily afforded 4)-6 in good yield (Scheme 2%

Scheme 2
a) t+-BuLi, THF
HMPA (4 equiv)
s .8 -78°C, 5 min TBSO g5 OH
b) Bno \/{(‘) BnO. OBn
T8S (-)-5 (2.5 equiv) (+)-6 (86%)

-78 — -45 °C, 30 min

In the presence of HMPA, both the initial alkylation 4f
and the subsequent Brook rearrangement occur within minutes
at —78 °C. Accordingly, the attempted sequential reaction of
4 with epoxides £)-5 and ()-7 led to a mixture of symmetrical
and unsymmetrical productstf§-6, (+)-8a,and ()-8b Scheme
3]. This result suggested that linchpin coupling of different
electrophiles would be feasible only if the Brook rearrangement
could be suppressed until the first alkylation was complete.

Scheme 3
a) +-BuLi, THF, HMPA (10%)
0, -78°C,5min
b) [A<_OBn TBSO S°S OH
S S (-)-5 (1.2 equiv) X' : X2
78°C,1n (+)-6  X'=X2=0Bn (26%)
TBS ¢) & +)- =X*=0Bn o
4 07 (15 equy) (+-88 X' =0Bn, X? = CH,OPMB (5%)
78°C—n, 1h  (+)-8b X'=X?= CH,0PMB (29%)

Fortuitously, an elegant recent study by Oshima, Utimoto,
and co-workers revealed dramatic solvent effects on similar
Brook rearrangements in the adducts of lithio dihalo(trialkyl-
silyl)methanes with epoxides (Schemée#)Rearrangement did
not occur following metalation and initial alkylation in THF
but proceeded readily upon addition of HMPA; the resultant

Br
TBS

1

Scheme 4

a) LDA, THF, -78°C, 1 h

_<§ 10 (1.2 equiv)
278540 °C, 1 h

TBSCHBY,

TBSO Br, Br

A
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¢) Mel (1.5 equiv), HMPA (24%)
THF, -78 °C-n, 5 h
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O-silyl organolithium could then react with a second electro- Table 2. Unsymmetrical Linchpin Couplings of Silyl Dithiang
phile. The analogous unsymmetrical bisalkylation of TM-

SCHLICN with two epoxides in DME has also been repofted, |/\|
although in this case it is unclear how the timing of the Brook

a) -Bull, Et,0, -78 »-45°C, 1 h
b) E;* (1 equiv), Et,0,-78 > -25°C, 1 h

¢} Ey* (2 equiv), Et,0, HMPA (0.3 - 0.4 equiv)

S S

rearrangement was controlled. TBS -78 50°C,1h>RT,1h
Metalation of4 and alkylation with epoxide-)-5 in Et,O 4
or THF likewise furnished the unrearranged carbinb)-03 Entry Eq* Ey* Product Yield
exclusively (Table 1, entries 1 and 2). In contrast, addition of (%)?
HMPA or DMPU16 (entries 3 and 4) induced the 1,4-Brook 43\
rearrangement, affording predominantly silyl ethe)-L4. LI ] s _oms Bnom . 56
Table 1. Solvent Effects on Brook Rearrangement in Coupling of 0 r1s )16
Silyl Dithiane 4 with Epoxide ()-5
) 2 o o
t-Bull, Et,0 . n o TBSQ ss QH
s(\ls .?8 4 S, 1 h HQ <s\s T8SQ <s\s Bro~ N |>(.)_\"/°7<°M Bro__ X o _ome 4

(9]

\l/ D eno. 0 Bno\/\)L Bno\/\)/ (+)-18 7<

TBS N TBs

¢ AR e s . A
Bno\/&,’ Br PN TBSQ 58 62
Yield 13 Yield 14 5 19 Bno A Ph
Entry Solvent Additive (%) (%) (+)-20
1 THF - 60 - 48 . @
3 Et,O HMPA 9 56 (5 y21
4 EtO DMPU 12 66 -2
aFollowing step b, the reaction mixture was cooled-t@8 °C, 58 ) o, r830 (s\s
treated with 0.3-0.4 equiv of additive in BO, and warmed to-45 Bno ~_C gro. i & 7
°C for 1 h. ()8 (+)-23

Encouraged by these results, we reinvestigated the one-pot
linchpin coupling of dithiane& with two different electrophiles. :/LO 9 o|>\/\oome m 59
Following deprotonation and addition of epoxide){5 in Et,0, v ) ©-28 gl oDMS8
introduction of HMPA plus a second epoxide or benzyl bromide
afforded the unsymmetrical bisalkylated products in-38% . ) . )
yields (Table 2’ Scalemic epoxides are particularly well Only 1 equiv of " was used” After chromatography.
suited to this process, because the configurations of the resultingg.heme 5
carbinol stereocenters are predetermined, circumventing the
formation and separation of unwanted diastereomers. Previous m

=]

a) t-BuLi (2.6 equiv)

.78 - -45 °C c) HMPA (0.3 equiv)
studies of 2-lithio-2-alkyldithianes suggest that a variety of other S\ - Et;0, 1h o s Etz0, -78 °C, 5 min
electrophiles should also be accommodated in the second step. tes  ® o _~§ Bno_A T8s o
Importantly, the substituents in several adducts (e.g., epoxides _ 4  (r5@6eqiv) 28 d)y21 (1 equiv)
22 and24) are poised for further elaboration. (2.6 equiv) -785-25°C, 1h -78°C > 1t

We have utilized the one-step coupling protocol to link L\ A &
advanced intermediates in several of our ongoing synthetic TBSQ g5 OH 8757 OTBS TBSQ “ss o
programs. For example, sequential alkylations of dithidne B"O\/z's\M)Q/L\/OB" LN
with epoxides €)-25 and ()-26 gave exclusively the spong- (+)-29 (66%) (+)-22 (2%)
istatin'® fragment @)-27 in 59% yield (Table 2, entry 6). A I\

survey of the literature suggests that the new protocol should
prove applicable to nearly all total syntheses utilizing dithiane
coupling strategies. HO

We have further extended this methodology by assembling
a five-componentcoupling product in a single operation.
Following alkylation of dithiane} with epoxide ¢)-5 (2.6 equiv
each) to generate the unrearranged alkoxy dithiz@eequential
addition of HMPA and {)-epichlorohydrin 21, 1 equiv)
furnished the bis(silyloxy dithiane) carbinet)-29in 66% yield,
accompanied by a minor amount (ca. 2%) of epoxit-22
(Scheme 5). This new strategy, if general, should result in
exceptionally concise routes to complex 1,3-polyol natural
products, including polyene macrocycles and macrolides such
as roflamycoin 80).1°

The further deve'opment Of one_step ||nchp|n Coup“ngs Of SUppOrting Information Available: Characterization data for

silyl dithianes and applications to natural product synthesis are Compounds}, 6, 8a, 8b 13, 14, 16, 18, 20, 22, 24, 2nd29 (6 pages).
currently under active investigation. See any current masthead page for ordering and Internet access

instructions.
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